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Abstract
Characteristic functions contain complete information about all the moments
of a classical distribution and the same holds for the Fourier transform of the
Wigner function: a quantum characteristic function, or the chord function.
However, knowledge of a finite number of moments does not allow for
accurate determination of the chord function. This provides the overlap of
the state with all its possible rigid translations (or displacements). We here
present a semiclassical approximation of the chord function for large Bohr-
quantized states, which is accurate right up to a caustic, beyond which the
chord function becomes evanescent. It is verified to pick out blind spots, which
are displacements for zero overlaps. These occur even for translations within
a Planck area of the origin. We derive a simple approximation for the closest
blind spots, depending on the Schrödinger covariance matrix, which is verified
for Bohr-quantized states.

PACS numbers: 03.65.−w, 03.65.Sq, 05.45.Mt

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Experiments in quantum optics (see e.g. [1]), atom traps or other quickly developing
technologies are rapidly realizing the promises of a manipulative quantum mechanics. The
refinement of these techniques has led to the development of the field of quantum information,
such that the interference between the wavefunctions of single atoms, or single modes of an
optical cavity, can be measured. So far, experiments have mainly been realized for very simple
states, but theory can anticipate a future where more delicate states, such as the superposition
of many coherent states or the excited states of an anharmonic oscillator may be made to
interfere. Experimental work with Rydberg atoms already point in this direction [2].

A typical interference experiment superposes two modified copies of the same initial
state. For instance, in quantum optics, it is easy to achieve the unitary transformation that
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corresponds to a uniform phase space translation (or displacement) of the phase space variables
x = (p, q). This translated state can then interfere with the original state. In general, the
unitary translation operator

T̂ξ = exp
[ i

h̄
(ξ ∧ x̂)

]
= exp

[ i

h̄
(ξp · q̂ − ξq · p̂)

]
(1)

acts on the state |ψ〉 to produce the new state |ψξ〉 = T̂ξ|ψ〉 in strict correspondence to the
classical translation, x �→ x + ξ, by the chord ξ.1 Thus, given an arbitrary superposition of a
state and its translation, a|ψ〉+b|ψξ〉, with |a|2 + |b|2 = 1, the probability that this is measured
to be in the untranslated state is |a + b〈ψ |ψξ〉|2.

Evidently, measurements of such probabilities (through repeated preparation) supply
detailed quantum information concerning these initial states. Better still, the full set of
possible overlaps defines the complete phase space representation,

χ(ξ) = 〈ψ |T̂−ξ|ψ〉. (2)

This is known as the chord function [3], as one of the quantum characteristic functions of
quantum optics [1] (or the Weyl function as in [4]), which is the Fourier transform of the
Wigner function [5]:

χ(ξ) =
∫

dx W(x) exp
{ i

h̄
(ξ ∧ x)

}
. (3)

The latter can be redefined, following Royer [3, 6], as

W(x) = 1

(πh̄)
〈ψ |R̂x|ψ〉, (4)

where R̂x, the Fourier transform of the translation operators, corresponds classically to the
phase space reflection through the reflection center x, i.e. x0 �→ 2x − x0.

Thus, both the Wigner function and the chord function provide complete information about
states, by telling us how they respond to certain continuous sets of quantum manipulations.
These translation and reflection operators act on Hilbert space in close correspondence to
classical phase space translations and reflections. Hence, their action on the excited states
of anharmonic oscillators should correspond closely to the translations and reflections of the
Bohr-quantized curves on which they are classically supported. This is well verified in the
context of the semiclassical theories for the Wigner function [7, 13] and the chord function
[8, 9]. The Wigner function, W(x), oscillates with a non-negligible amplitude for all reflection
centers, x, such that the quantized curve and its reflection intersect transversely, as shown in
figure 1(a). Likewise, all translation chords, ξ, for which the translated curve intersects
the quantized curve transversely, are in the region where the chord function, χ(ξ), displays
sizeable oscillations. Since the quantized curve is closed, it intersects its reflection around
x, or its translation by ξ, at an even number of points. In both cases, it is the area between
the pair of curves joining two intersections that determines the phase of the oscillations of the
Wigner and the chord function, respectively, the shadow areas in figure 1.

However, it turns out that in both cases the classical region associated with the quantized
curve lies on caustics where a simple semiclassical theory breaks down. In the case of the
Wigner function, this caustic is the locus of reflection centers in the neighborhood of the
quantized curve itself, that is, as the center, x, approaches the curve, pairs of intersections
with the reflected curve coalesce. This caustic is generic and was already dealt with in Berry’s
original treatment [7]. In contrast, the classical region in the space of translation chords is

1 In the optical context, T̂ ξ is usually referred to as the displacement operator and is expressed in terms of creation
and annihilation operators for the harmonic oscillator. This is inconvenient for semiclassical analysis.
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the neighborhood of the origin, whatever the shape of the quantized curve. This is highly
nongeneric because all points on the quantized curve intersect the translated curve in the
limit as ξ → 0, i.e. both curves coincide. Another (nonclassical) caustic, associated with
the longest chords for which the translated curve still touches the Bohr-quantized curve, was
already treated semiclassically in [9] (along with the corresponding Wigner caustic). Thus, the
present theory, joining the short chord region to the oscillatory region, completes the general
picture for the chord function of a Bohr-quantized state with a single degree of freedom.

Notwithstanding the difficulty of including the neighborhood of the origin of chords in a
semiclassical theory, this region encodes a rich store of information concerning the quantum
state. On the one hand, the derivatives of the chord function, evaluated at the origin, specify
all the moments of position and momentum and their products. For a Bohr-quantized state,
the moments can be identified with classical averages over the corresponding quantized curve,
which is one justification for considering a Planck area surrounding the chord origin to be
a classical region. In contrast, one finds points of complete orthogonality between the state
and its translation within this same neighborhood, which shows that classical correspondence
cannot be pushed too far. In the general case where the state has no reflection symmetry,
orthogonality occurs for isolated points. A theoretical treatment for the pattern of these
special chords, named blind spots, was presented for arbitrary superpositions of coherent or
squeezed states in [10]. One of the objectives here is to extend this analysis to Bohr-quantized
states.

Our starting point is a simple integral formula for the chord function that is only valid for
small chords. This was presented in [8], but we here provide a fresh rederivation in section 2
and then go on to show that it leads to classical expressions for the moments. Of course, the
knowledge of all the moments provides a Taylor series for the chord function, but its finite
polynomial approximations cannot be joined smoothly to the oscillatory region, which is well
described by the standard semiclassical theory in [8, 9]. In section 3, we establish the presence
of blind spots in a neighborhood of the origin for any extended state. We present, in section 4,
an interpolation that bridges the two regimes of the chord function (small and long chords).
The full semiclassical theory is compared numerically with the exact result in section 5 for an
example of a Fock state that is subjected to a unitary transformation which breaks its reflection
symmetry. Finally, we discuss our results in section 6.

2. Small chords and moments of position and momentum

Consider a general semiclassical WKB state associated with the one-dimensional classical
manifold defined by S(q, I = I) [7, 11, 12],

〈q|ψI〉 = N
∑

j

∣∣∣∣∂
2Sj (p, q)

∂q∂I

∣∣∣∣
− 1

2

e
i
h̄
Sj (q,I )+iβj , (5)

where S is the generating function of the canonical transformation between the Cartesian
variables and the action-angle variables, namely x = (p, q) �→ (I, θ), the index j enumerates
the branches of S and β is the Maslov correction. The chord function for a WKB state, obtained
by translating this state and taking its overlap according to (2), is given by the superposition

χw(ξ) =
∑
jk

χjk(ξ), (6)

where the terms χjk are given by

χjk(ξ) = N2
∫

dQ

∣∣∣∣ ∂2Sj

∂q∂I
(Q+)

∂2Sk

∂q∂I
(Q−)

∣∣∣∣
− 1

2

e
i
h̄ [Sj (Q+)−Sk(Q−)−ξpQ]+i(βj −βk), (7)

3
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(a) (b)

Figure 1. Classical reflection (a) and translation (b) of a Bohr-quantized curve. Semiclassically,
the intersection between the original and the transformed curve determines the stationary points,
and the semiclassical phase is given by the area bounded by them (shadow area).

with Q± ≡ Q ± ξq

2 . Thus, the oscillatory semiclassical form for each branch of the chord
function results from the stationary phase evaluation of this integral, to be discussed in
section 3, but here we are concerned with the limit where the translation is so small that the
phase between stationary points does not rise above the Planck’s constant.

Due to the symplectic invariance of the chord function [3], we may choose ξ to be parallel
to the vertical axis, without loss of generality. In this case, Q+ = Q− = Q, so that the
phase difference between the top and bottom branches of the curve is just the curve area as a
function of Q, which is large and not stationary. Thus, the neglect of these terms leaves only
the ‘diagonal’ terms in (6), which are given by

∑
j

χjj (ξ) = N2
∑

j

∫
dQ

∣∣∣∣∂θj

∂q

∣∣∣∣ e
i
h̄
ξpQ = N2

∫ 2π

0
dθ e−iξpQ(θ)/h̄. (8)

Again, making use of symplectic invariance, the right-hand side expression can be identified
with the semiclassical approximation of the chord function for short chords, introduced in [8]:

χ(ξ) �
∫ 2π

0

dθ

2π
eix(θ)∧ξ/h̄ =

∫ 2π

0

dθ

2π
ei[p(θ)ξq−q(θ)ξp]/h̄. (9)

This approximation assumes that the classical curve is specified by action-angle variables,
that is, I (p, q) = I and, conversely, x(θ) ≡ (p(θ), q(θ)).

Formula (9) holds for any choice of the direction of the small chord ξ [8]. It describes
the purely classical features of the state, inasmuch as it is the exact Fourier transform of the
‘classical approximation’ of the Wigner function, W(x) = δ[I (p, q) = I]/2π , proposed by
Berry [7]. However, it is more precise to consider this form of the Wigner function as a rash
extrapolation of the correct form of the small chord approximation to arbitrarily large chords.
Indeed, it will be shown here that the small chord version encodes quantum orthogonalities,
as well as classical moments.

The definition of the chord function (2) allows us to calculate the statistical moments of
p̂ and q̂ in the form of derivatives of the chord function, i.e. explicitly

〈p̂n〉 = tr p̂nρ̂ = (−ih̄)n
∂nχ

∂ξn
q

∣∣∣∣∣
ξ=0

and 〈q̂n〉 = tr q̂nρ̂ = (ih̄)n
∂nχ

∂ξn
p

∣∣∣∣∣
ξ=0

. (10)

Conversely, if we know all the moments, then we know the chord function because the
expansion in a Taylor series of the chord function is

χ(ξ) =
∞∑

n=0

1

n!

n∑
k=0

(−1)k

(ih̄)n

(
n

n − k

)
〈M(q̂n−kp̂k)〉ξk

q ξn−k
p , (11)

4
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where

M(q̂np̂k) = 1

n + k

∑
Pnk

q̂np̂k (12)

and Pnk are all possible permutations of products of qn and pk. Equation (12) corresponds to
the symmetrization of the product qnpk , being the important feature of the Weyl symbols,
which guarantees the symplectic invariance of the chord function.

According to (10) and (9), for a given parameterization, the moments are obtained by
evaluating the integrals of the form

〈qn〉 ∼
∫ 2π

0

dθ

2π
[q(θ)]n and 〈pn〉 ∼

∫ 2π

0

dθ

2π
[p(θ)]n. (13)

These formulae correspond to the classical expected values of powers of position and
momentum. They can also be obtained directly from the classical approximation of the
Wigner function, even though this is not so satisfactory in other respects.

3. Nodal lines and blind spots

The chord function (3) is the Fourier transform of the real Wigner function and is in general
complex. Indeed, the fact that it represents a Hermitian operator only implies the constraint
χ(−ξ) = χ(ξ)∗, where the asterisk denotes complex conjugation. On the other hand, the
cosine and the sine transforms, c(ξ) and s(ξ), of the Wigner function are real, i.e. the real
and imaginary part of χ(ξ), respectively. In line with the definition (2), we may construct the
Hermitian operators

ĉξ = T̂ξ + T̂−ξ

2
= cos

(
ξ ∧ x

h̄

)
and ŝξ = T̂ξ − T̂−ξ

2i
sin

(
ξ ∧ x

h̄

)
, (14)

so that c(ξ) = 〈ψ |ĉξ|ψ〉 and s(ξ) = 〈ψ |ŝξ|ψ〉.2 So these are the generalizations of the
potentials cos(kq) and sin(kq) of cold atoms illuminated by standing waves from lasers
[14, 15], where k is the wave vector of the laser and q is the position coordinate. In the
case when the state |ψ〉 has a center of symmetry (i.e. there exists a center x, such that
R̂x|ψ〉 = ±|ψ〉), then s(ξ) = 0, so that χ(ξ) = c(ξ) [8, 10].

In the general case where there is no reflection symmetry, an intersection of a nodal
line of c(ξ) with a nodal line of s(ξ) defines a blind spot [10], at which the translated state,
|ψξ〉, becomes orthogonal to |ψ〉 (some examples are illustrated in figures 2 and 3). Because
χ(0) = 1, the origin lies on a nodal line of s(ξ). In a neighborhood of the origin, the chord
function may be approximated by

χ(ξ) = 〈T̂−ξ〉 �
〈
1 − i

h̄
ξ ∧ x̂ − 1

h̄2 (ξ ∧ x̂)2 + · · ·
〉

(15)

= 1 − i

h̄
ξ ∧ 〈x̂〉 − 1

h̄2 〈(ξ ∧ x̂)2〉 + · · · . (16)

Thus, the nodal line of s(ξ) crossing the origin is locally parallel to the direction of 〈x̂〉.
On the other hand, because the origin is the maximum of the real part of the chord function,

the nodal lines of c(ξ) for small chords avoid the origin. It follows from (16) that the closest
nodal line surrounding the origin is given approximately by

〈(ξ ∧ x̂)2〉 = 〈q̂2〉ξ 2
p + 〈p̂2〉ξ 2

q − 2〈q̂p̂ + p̂q̂〉ξqξp = ξKξ = h̄2 (17)

2 An alternative interpretation is to consider c(ξ) and s(ξ) to be the chord functions for appropriately symmetrized
states [10].

5
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Figure 2. Left: chord function for the fifth Fock state. It has reflection symmetry and its five nodal
lines correspond to circles. Right: radial cut of χ5(ξ). Here h̄ = 0.1.

if we neglect higher order terms. This positive quadratic form is defined in terms of the
Schrödinger covariance matrix [16], K, which establishes the extent of the state in phase
space, that is, det K � (2πh̄)2 is just the symplectically invariant version of the uncertainty
principle. The nodal line of c(ξ) is thus approximated by the ellipse (17), and the closest blind
spot lies near the tip of the diameter parallel to 〈x̂〉. It is important to note that the present
estimate for the pair of closest blind spots depends only on the first- and second-order moments.
In the case of a quantized curve treated here, it will be verified that the qualitative features of
the nodal lines are explained by this simple approximation. However, the nodal lines of c(ξ)

may show marked influence of the higher order moments, in the case of a superposition of
coherent states [10].

The highly excited Bohr-quantized states appropriate for semiclassical treatment have a
covariance matrix that is well described by the classical averages discussed in the previous
section, such that det K � (2πh̄)2. Thus, the ellipse (17) lies in the deep interior of a
neighborhood of the origin with

√
h̄ linear dimensions. This is in line with the discussion in

[10]: notwithstanding the delicate quantum nature of blind spots, they can be found in the
‘classical’ neighborhood of the origin and they are precisely determined by classical features.
This apparent paradox is resolved by the reciprocal relation between large and small scales of
pure states in phase space, that follows from the universal invariance of the intensity of the
chord function for pure states with respect to Fourier transformation [4, 8]:

|χ(ξ)|2 = 1

(2πh̄)

∫
dη|χ(η)|2 exp

{ i

h̄
(ξ ∧ η)

}
. (18)

So far, we have only estimated the closest blind spots to the origin. It is hopeless to pursue
the Taylor expansion (16) any further to find further orthogonalities. On the other hand, the
real and imaginary parts of the short chord approximation (9) have many nodal lines in the
region where it holds, in the case of a big Bohr-quantized state. In the following section, an
interpolation formula is presented that allows for a uniform description, which is also valid in
the outer oscillatory region, where the chord function is evaluated by the stationary phase.

4. Joining the long and short chord regimes

In section 2, we rederived the ‘classical’ approximation (9), which holds in the neighborhood
of the origin, but not in the region beyond. Otherwise, the long-chord regime is well described

6
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(a) (b)

(c) (d)

Figure 3. The chord function for the evolved Fock state e−iĤ t/h̄|n = 5〉. At this resolution, the
difference between the exact and the semiclassical approximation is indiscernible. The black lines
in the real (a) and imaginary (b) parts are the level curves for χ (ξ) = 0. (c) The logarithmic
intensity and (d) the phase. The points in (a) show the location of the ‘blind spots’. Here h̄ = 0.1,
t = 0.1, α2 = α1 = 1.

in terms of Airy functions [9], describing an oscillatory region in a ring surrounding the origin,
through an outer caustic and on to an asymptotic evanescent regime as |ξ| → ∞ . This Airy
function results from the uniform approximation based on the stationary points of the exponent
in (7). As mentioned in the introduction, the stationary points are geometrically identified by
the intersections between the supporting manifold and its translation (see figure 1).

There are two basic reasons why the standard uniform approximation technique, involving
a transformation of the integral (9) into a simpler one (cf [17, 18]), cannot be employed near
the origin. One is that there are an infinite number of stationary points of the exponent (7)
at ξ = 0, whence the origin is a non-generic caustic (in the sense of Thom’s classification
theorem [17, 19]). In addition to this, the large parameter condition in the exponent, essential
for asymptotic expansions of integrals [18], is not fulfilled for the case of small values of |ξ|,
where the behavior of the integral is given by (9) because |ξ|/h̄ ∼ 1.

In order to describe the transition regime (between short and long chords), we propose
the following (semiclassical) expression for the chord function:

χsc(ξ) = χs(ξ) − SP[χs](ξ) + SP[χw](ξ). (19)

Here χs is the integral (9), χw is the full semiclassical integral for the chord function, (6) and
(7), and SP[·] denotes the approximation of [·] by the stationary phase. Note that χs(ξ) was
derived as a short chord approximation to χw(ξ), but, since ξ ∧ x(θ) in the exponent of (9)

7
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is a nonlinear function of the integration variable θ , this integral can also be evaluated by a
stationary phase. Indeed, the pair of integrals in (19) that are evaluated by the stationary phase
must cancel in the neighborhood of the origin. On the other hand, the middle term, SP[χs],
cancels χs for large values of |ξ|, where stationary phase evaluation is valid.

The stationary phase method assumes that the integral is dominated by points where the
phase is stationary. In the case of the chord function, such stationary points have a geometrical
interpretation. Namely, each stationary point defines pairs of points x± on the curve. The
point x− is the intersection of the classical curve with its translation by the vector −ξ, whereas
x+ = x−+ξ. This fitting of the chord into the curve is called a chord realization. The stationary
points of the chord function are the q-coordinates of the centers xj of such realizations. In
figure 1(b), we show that each chord has two realizations in a convex closed curve.

The amplitude in the above semiclassical approximation may be expressed in terms of the
canonical action variable, I (x). Specifically, the amplitude is given by |{I +, I−}|− 1

2 , where I±

is the action variable at the tips of the realization of ξ. Finally, the phase in this approximation
is determined by the area Axj

, between the realization of ξ and the curve, plus the product
xj ∧ ξ. An additional phase, σj , is given by the sign of the expression

∂2

∂Q2
[S(xj + ξ/2) − S(xj − ξ/2)]. (20)

Therefore, the stationary phase evaluation for χw [8] is

SP[χw](ξ) = 1

2π

∑
j

exp
[

i
h̄
Axj

(ξ) + xj ∧ ξ + π
4 (σj (ξ) + γj )

]
∣∣{I +

j , I−
j

}∣∣ 1
2

, (21)

where j enumerates the stationary points xj and γj is the difference between the Maslov
corrections in (7).

On the other hand, for χs , we have

SP[χs](ξ) = 1

2π

∑
�

[x′′(θ�(ξ)) ∧ ξ]−
1
2√

2πh̄
exp

[
i

h̄
x(θ�(ξ)) ∧ ξ +

π

4
sign (x′′(θ�(ξ)) ∧ ξ)

]
, (22)

where � enumerates the stationary points for χs , that is, the points where the vector ξ is tangent
to the curve. Thus, inserting the explicit stationary phase evaluations (21) and (22) into (19)
leads to a general approximation, in which the only integral left to be evaluated numerically
was already present in the short chord approximation (9).

5. Nonlinear evolution of a Fock state

In order to test the general approximation (19), we analyze the chord function of a one-
parameter set of states, evolving under the action of a simple cubic Hamiltonian, depending
only on momenta:

H(p) = α3p
3 + α2p

2 + α1p + α0. (23)

The classical evolution is then determined by

p(t) = p(0) and q(t) = q(0) + (3α3p
2 + α2p + α1)t. (24)

For a fixed time parameter, t � 0, the action function is I (p, q, t) = (q − [3α3p
2 + 2α2p +

α1]t)2 + p2, so that the classical curve supporting the evolved state corresponds to the level
curve I (p, q, t) = I.

For t = 0, we choose a Fock state, |n〉, which is an excited state of the harmonic oscillator
of frequency ω. Choosing ω = 1, Fock states are supported by a circular manifold, so they

8
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are symmetric with respect to reflections. By choosing the center of the supporting circle as
the origin, we obtain the (exact) real chord function [8]

χn(ξ) = e−|ξ|2/4h̄Ln

(
ξ2

h̄

)
, (25)

where Ln(·) is the nth Laguerre polynomial [20]. Since χn is real, it has full nodal lines
corresponding to circles, and its radii are h̄ times to the roots of the nth Laguerre polynomial,
as shown in figure 2. The above classical evolution breaks the original central symmetry
because of the cubic term in the Hamiltonian. For these states, the approximation for the first

nodal line, equation (17), provides a circle of radius
√

h̄
/(

n + 1
2

)
. This result differs from the

exact with ∼18% of accuracy; so as previously mentioned, approximation (17) just gives a
qualitative estimation for the first nodal line.

On the other hand, the exact evolving chord function, obtained from (2), is

χ(ξ, t) = 〈ψ(t)|T̂−ξ|ψ(t)〉 =
∫

dpψ∗
n (p+) e− i

h̄
(t[H(p+)−H(p−)]−pξq )ψn(p−), (26)

where p± ≡ p ± ξp/2 and

ψn(p) = (−i)n√
2nn!

(
1

πh̄

) 1
4

Hn

(
p√
h̄

)
e− p2

2h̄ (27)

is the Fock state n in the p-representation and Hn(·) is the nth Hermite polynomial [20]. For
any t > 0, the reflection symmetry is broken; thus, the chord function has no more a global
parity, which implies that the imaginary part is not null. As shown in figure 3, expression (19)
describes appropriately the behavior of the chord function for short and long chords. Clearly
SP[χw] is not valid when ξ tends to a diameter, but the resulting singularity is avoided by
using the uniform approximation [9]. We can recognize the real (figure 3(a)) and imaginary
(figure 3(b)) parts by their even and odd parity, respectively. The intersections of nodal lines
for both the real and the imaginary parts correspond to the blind spots, i.e. the zeros of the
intensity (local maxima in figure 3(c)) and singularities in the phase (figure 3(d)). The pair
of closest blind spots, which were approximately specified by the first- and second-order
moments in section 2, result from the intersection of the smallest closed curve in figure 3(a)
with the straight line through the origin in figure 3(b). It is curious that the other intersections
also seem to imply radial straight lines in this example.

The detailed comparison of the intensities for our semiclassical approximation of the
chord function (19) with the exact result is shown in figure 4. The particular radial straight
line chosen exhibits a sequence of blind spots. We observe a caustic (the diameter singularity)
at the left edge of the figure. It arises in the stationary phase approximation, but this spurious
divergence is corrected by the uniform approximation in [9].

6. Discussion

The chord function portrays a pure state by exhibiting its overlap with all its possible
translations. There are two cases where such a state has a clear classical correspondence:
the superposition of well-separated coherent or squeezed states treated in [9] and the Bohr-
quantized states analyzed here. Contrary to naive considerations, in neither case is the decay in
the square modulus of the overlap smooth and classical like within a Planck area of the chord
origin. Here we have shown that blind spots, denoting zero overlap, arise deep within this
classically small neighborhood. This feature depends basically on the Schrödinger covariance
matrix: the greater its determinant, the closer to the origin will the blind spots lie.
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Figure 4. Comparison between the exact and the semiclassical intensities of the chord function
for a evolved Fock state e−iĤ t/h̄|5〉, along the line ξp = 0.8172ξq . We can observe a sequence of
blind spots. Here h̄ = 0.1, t = 0.1.

Knowledge of a finite number of moments determines the chord function of a Bohr-
quantized state near the origin, but it is insufficient to follow through the complex oscillations,
punctuated by a complex pattern of blind spots, up to the outer limit of an evanescent region.
We have presented a new semiclassical approximation for the chord function of Bohr-quantized
states and verified that it is accurate, right up to the outer caustic, which was previously treated
in [9]. In the absence of reflection symmetry, such as present in a Fock state, the chord function
is fully complex, which leads to a richer structure than that displayed by the corresponding
Wigner function.

If the system is in contact with an uncontrolled environment, the state will not remain pure,
so it must be described by the density operator ρ̂ and definition (2) becomes χ(ξ) = tr ρ̂T̂−ξ .
Though this chord function still supplies a complete description of the state, the overlap with
its translation is now given by

C(ξ) ≡ tr
[
ρ̂
(
T̂ξ ρ̂T̂

†
ξ

)] = 1

2πh̄

∫
|χ(η)|2 e−iξ∧η/h̄ dη. (28)

For small displacements, ξ → 0, the correlation has a maximal value since C(0) = tr ρ̂2 = 1.
As the displacement increases, we attain an oscillatory regime, where the stationary phase
approximation takes account. This behavior changes after the diameter caustic is reached,
followed by an evanescent region. For the pure states, this correlation is invariant under
Fourier transform since it reduces to C(ξ) ∼ |〈ψ |T̂ξ |ψ〉|2 = |χ(ξ)|2, according to (18).

As in the case of superpositions of Gaussian wavepackets [10], we expect that blind spots
will survive in the chord function for a Markovian quantum evolution appropriate to an open
system. However, they should disappear from C(ξ) much more quickly than the negative
regions of the Wigner function. Blind spots correspond to sharp indentations on a background
of maximal correlations which makes them measurable. As shown in [9], they take their place
as very sensitive indicators of the full quantum coherence alongside the zeros of the Husimi
function [21]. The latter often has its zeros in shallow evanescent regions [21], where they are
tricky to distinguish.
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